Customs tests in Free Electrons’s lab

Florent (Skia) Jacquet
June 7, 2017

Free Electrons

Why custom tests

e Just booting is not enough.

e Need to test some specific components such as USB, SATA,
network...

e Also need to test with custom kernel images, or custom
rootfs, or both.

e Need to be able to send jobs, on demand, easilly, on the
specified boards, while being notified at the end.

Overall architecture

Many tools

o LAVA
Buildroot

The custom test tool

The test suite

(WA\V/A

® https://www.linaro.org/initiatives/lava/

e Runs jobs on devices.
A job define a procedure to run, and contains the needed
informations: which kernel image to run on which device, with
which DT /rootfs, and what commands to run in userspace, etc...

e Runs KernelCl jobs: only boot.

e Provides an API to do many thing. Among them: sending jobs and
querying results.

https://www.linaro.org/initiatives/lava/

https://github.com/free-electrons/buildroot-ci

e Used to make only rootfs.

e Is configured to provided the needed tools such as iperf, bonnie++,
etc...

e Builds fresh rootfs every-night for all the needed architectures:
ARMv4, ARMv5, ARMv7, ARMvS.

e Stores them in a LAVA-accessible folder in the farm.
e Small overlay over vanilla buildroot:
e ./build_rootfs.sh to build the rootfs
o ./configs/ci_x_defconfig are the differents defconfigs.
e ./board/ci/* contains among other small stuff, the
busybox.config file.

https://github.com/free-electrons/buildroot-ci

The custom test tool

e https://github.com/free-electrons/custom_tests_tool
e Has job templates and knows how to send them.

e Has a list of devices in the boards.py file containing the
non-changing data

e Can fetch latest builds URLs from KernelCl through its API.
e Can upload custom artifacts useable for tests.
e Can ask LAVA to notify given emails addresses when the job ends.

e Needs an access to the LAVA API, an SSH access to the LAVA
server to upload artifacts, and a KernelCl API token to go fetch the
latest builds if no custom artifacts are provided.

e Keeps a boards.py file to store the boards configuration.

https://github.com/free-electrons/custom_tests_tool

The test suite

e https://github.com/free-electrons/test_suite

e Is a bunch of shell scripts that will be run on the devices.

e Also needs YAML files to interface with LAVA.
This file basically describes a list of commands to be run, and
usually, it only calls the script.

e In practice, generic YAML files were made for the test suite, but
there may be a need for specific ones in the futur.

Example:

metadata:
format: Lava-Test Test Definition 1.0
name: first-test

run:
steps:

- lava-test-case first-test --shell ./scripts/first_test.sh $DEVICE

https://github.com/free-electrons/test_suite

Devices

downloads

creates and sends,

Test suite

scripts

Custom L Buildroot-ci
Test Tool Farslits

KernelCl

Kernels - DTB

Figure 1: Architecture

Workflow

Daily jobs:

e A cron job runs at 23:23 to:
e
e Launch custom tests on every boards with there default
configuration.
e Another cron is run at 11:00 to get the results of the last 24
hours and send mails given the failed tests and which email
address is subscribed to what board (in the boards.py file).

Workflow (2)

On demand jobs:

e ./ctt.py -b all
sends jobs to all boards with their default tests (it's what the daily
cron job does)

e ./ctt.py -b beaglebone-black -m network
sends only the network test using the multinode job template (-m)
to the beaglebone black

e ./ctt.py -b armada-7040-db armada-8040-db
-t first_test --kernelci-tree next —-no-send
stores the jobs (——no-send) for the 7040 and 8040 devices, to run
only the first_test test on the latest KernelCl build of the next tree

How do tests work?

LAVA v2 jobs

e Jobs are YAML files that, combined with the device-types and
devices dictionaries in the LAVA configuration, describe what

to do with which device.

e |t contains:

Which device(s) to use

The artifacts informations (URL, type, ...)

How to boot them (Uboot, fastboot, ramdisk, nfs, shell strings
to expect, ...)

The tests to run once booted.

Some metadata and various job informations (priority,
notifications, timeouts, ...)

10

How do LAVA runs test?

e Before bringing up the board, LAVA:

e Fetches the artifacts.

e Applies the needed modifications (append DTB, mkimage,
modules, ...)

e Also downloads the test suite and puts it in the rootfs. This
moment also makes some magic to provide some helpers
useable in the test scripts.

e Finally connects itself and powers up the board.

e After the board is booted:

e Runs each test described in the job definition.

e For each call to the ‘lava-test-case’ command, creates the
corresponding results objects. It's thus important to call it at
least once, or you'll have a job with no results, apart from the

log.

11

How to write tests?

e Tests are in the test_suite repo.

e You basically just need to write your script in the scripts
folder.

e Don't forget to give it the .sh extension, and for multinode
jobs, they must follow this naming convention:

testname-laptop.sh and testname-board.sh.

e Writing a single test is easy, but it's more complicated to
write MultiNode jobs since you need to synchronize them.
e In MultiNode, you have access to helper commands

e lava-send <message-id> [keyl=vall [key2=val2] ...]
e lava-wait <message-id>

'Full reference:
https://validation.linaro.org/static/docs/v2/multinodeapi.html

12

https://validation.linaro.org/static/docs/v2/multinodeapi.html

Full MultiNode example

Server side:

#!/bin/sh

iperf -s &

echo $! > /tmp/iperf-server.pid

IP=‘ip route get 8.8.8.8 | head -n 1 | awk ’{print $NF} ¢
echo $IP

lava-send server-ready server-ip=$IP

lava-wait client-done

kill -9 ‘cat /tmp/iperf-server.pid‘

Client side:

#!/bin/sh

lava-wait server-ready

server=$(cat /tmp/lava_multi_node_cache.txt | cut -d = -f 2)
iperf -c $server

... do something with output

lava-send client-done

13

Collecting the results

e LAVA's notification system can send emails if asked. That's
the way results are reported when sending on demand jobs.

e A daily cron job fetchs the results and aggregates them in an
personalized email to each address in the boards.py file of

the custom test tool.

e A dashboard is hourly refreshed presenting the devices and the
tests in a table with colors and links to the jobs 2.
The code lives in the custom test tool repo, under the
./dashboard folder.

2It’s running here: http://farm:5000
14

http://farm:5000

Sum up, improving, contributin

The READMEs should already explain much of what you'll need.

e To add more tools to the rootfs:
https://github.com/free-electrons/buildroot-ci

e To add more boards once they are in LAVA, or add more tests to a
board, or to modify the job templates, or to improve the dashboard,
or simply to subscribe to a device:
https://github.com/free-electrons/custom_tests_tool

e To add more tests in the test suite:
https://github.com/free-electrons/test_suite

5

https://github.com/free-electrons/buildroot-ci
https://github.com/free-electrons/custom_tests_tool
https://github.com/free-electrons/test_suite

Question?

16

	Overall architecture
	How do tests work?

