
Customs tests in Free Electrons’s lab

Florent (Skia) Jacquet
June 7, 2017

Free Electrons

Why custom tests

• Just booting is not enough.
• Need to test some specific components such as USB, SATA,
network...

• Also need to test with custom kernel images, or custom
rootfs, or both.

• Need to be able to send jobs, on demand, easilly, on the
specified boards, while being notified at the end.

1

Overall architecture

Many tools

• LAVA
• Buildroot
• The custom test tool
• The test suite

2

LAVA

• https://www.linaro.org/initiatives/lava/

• Runs jobs on devices.
A job define a procedure to run, and contains the needed
informations: which kernel image to run on which device, with
which DT/rootfs, and what commands to run in userspace, etc...

• Runs KernelCI jobs: only boot.
• Provides an API to do many thing. Among them: sending jobs and

querying results.

3

https://www.linaro.org/initiatives/lava/

Buildroot

• https://github.com/free-electrons/buildroot-ci

• Used to make only rootfs.
• Is configured to provided the needed tools such as iperf, bonnie++,

etc...
• Builds fresh rootfs every night for all the needed architectures:

ARMv4, ARMv5, ARMv7, ARMv8.
• Stores them in a LAVA-accessible folder in the farm.
• Small overlay over vanilla buildroot:

• ./build_rootfs.sh to build the rootfs
• ./configs/ci_*_defconfig are the differents defconfigs.
• ./board/ci/* contains among other small stuff, the

busybox.config file.

4

https://github.com/free-electrons/buildroot-ci

The custom test tool

• https://github.com/free-electrons/custom_tests_tool

• Has job templates and knows how to send them.
• Has a list of devices in the boards.py file containing the

non-changing data
• Can fetch latest builds URLs from KernelCI through its API.
• Can upload custom artifacts useable for tests.
• Can ask LAVA to notify given emails addresses when the job ends.
• Needs an access to the LAVA API, an SSH access to the LAVA

server to upload artifacts, and a KernelCI API token to go fetch the
latest builds if no custom artifacts are provided.

• Keeps a boards.py file to store the boards configuration.

5

https://github.com/free-electrons/custom_tests_tool

The test suite

• https://github.com/free-electrons/test_suite
• Is a bunch of shell scripts that will be run on the devices.
• Also needs YAML files to interface with LAVA.

This file basically describes a list of commands to be run, and
usually, it only calls the script.

• In practice, generic YAML files were made for the test suite, but
there may be a need for specific ones in the futur.

Example:

metadata:
format: Lava-Test Test Definition 1.0
name: first-test

run:
steps:

- lava-test-case first-test --shell ./scripts/first_test.sh $DEVICE

6

https://github.com/free-electrons/test_suite

Overview

Figure 1: Architecture 7

Workflow

Daily jobs:

• A cron job runs at 23:23 to:
• Build fresh rootfs.
• Launch custom tests on every boards with there default

configuration.

• Another cron is run at 11:00 to get the results of the last 24
hours and send mails given the failed tests and which email
address is subscribed to what board (in the boards.py file).

8

Workflow (2)

On demand jobs:

• ./ctt.py -b all
sends jobs to all boards with their default tests (it’s what the daily
cron job does)

• ./ctt.py -b beaglebone-black -m network
sends only the network test using the multinode job template (-m)
to the beaglebone black

• ./ctt.py -b armada-7040-db armada-8040-db
-t first_test --kernelci-tree next --no-send
stores the jobs (−−no-send) for the 7040 and 8040 devices, to run
only the first_test test on the latest KernelCI build of the next tree

9

How do tests work?

LAVA v2 jobs

• Jobs are YAML files that, combined with the device-types and
devices dictionaries in the LAVA configuration, describe what
to do with which device.

• It contains:
• Which device(s) to use
• The artifacts informations (URL, type, ...)
• How to boot them (Uboot, fastboot, ramdisk, nfs, shell strings

to expect, ...)
• The tests to run once booted.
• Some metadata and various job informations (priority,

notifications, timeouts, ...)

10

How do LAVA runs test?

• Before bringing up the board, LAVA:
• Fetches the artifacts.
• Applies the needed modifications (append DTB, mkimage,

modules, ...)
• Also downloads the test suite and puts it in the rootfs. This

moment also makes some magic to provide some helpers
useable in the test scripts.

• Finally connects itself and powers up the board.
• After the board is booted:

• Runs each test described in the job definition.
• For each call to the ‘lava-test-case‘ command, creates the

corresponding results objects. It’s thus important to call it at
least once, or you’ll have a job with no results, apart from the
log.

11

How to write tests?

• Tests are in the test_suite repo.
• You basically just need to write your script in the scripts
folder.

• Don’t forget to give it the .sh extension, and for multinode
jobs, they must follow this naming convention:
testname-laptop.sh and testname-board.sh.

• Writing a single test is easy, but it’s more complicated to
write MultiNode jobs since you need to synchronize them.

• In MultiNode, you have access to helper commands 1:
• lava-send <message-id> [key1=val1 [key2=val2] ...]
• lava-wait <message-id>

1Full reference:
https://validation.linaro.org/static/docs/v2/multinodeapi.html

12

https://validation.linaro.org/static/docs/v2/multinodeapi.html

Full MultiNode example

Server side:

#!/bin/sh
iperf -s &
echo $! > /tmp/iperf-server.pid
IP=‘ip route get 8.8.8.8 | head -n 1 | awk ’{print $NF}’‘
echo $IP
lava-send server-ready server-ip=$IP
lava-wait client-done
kill -9 ‘cat /tmp/iperf-server.pid‘

Client side:

#!/bin/sh
lava-wait server-ready
server=$(cat /tmp/lava_multi_node_cache.txt | cut -d = -f 2)
iperf -c $server
... do something with output ...
lava-send client-done

13

Collecting the results

• LAVA’s notification system can send emails if asked. That’s
the way results are reported when sending on demand jobs.

• A daily cron job fetchs the results and aggregates them in an
personalized email to each address in the boards.py file of
the custom test tool.

• A dashboard is hourly refreshed presenting the devices and the
tests in a table with colors and links to the jobs 2.
The code lives in the custom test tool repo, under the
./dashboard folder.

2It’s running here: http://farm:5000

14

http://farm:5000

Sum up, improving, contributing...

The READMEs should already explain much of what you’ll need.

• To add more tools to the rootfs:
https://github.com/free-electrons/buildroot-ci

• To add more boards once they are in LAVA, or add more tests to a
board, or to modify the job templates, or to improve the dashboard,
or simply to subscribe to a device:
https://github.com/free-electrons/custom_tests_tool

• To add more tests in the test suite:
https://github.com/free-electrons/test_suite

15

https://github.com/free-electrons/buildroot-ci
https://github.com/free-electrons/custom_tests_tool
https://github.com/free-electrons/test_suite

Questions

Question?

16

	Overall architecture
	How do tests work?

