
2015-2016

Report
Indoor Positioning application in an

Android terminal.

Group members :
Florent Jacquet
Simon Magnin-Feysot
Houda EL HILALI
Lin ZHU
Haishan FANG

Summaries

1. Introduction ... 2

2. Importance of such project .. 3

3. Diagrams ... 4

3.1. Global sequence diagram ... 4

3.2. Database mode ... 5

4. Technologies used ... 6

4.1. Python: ... 6

4.1.1. Flask ... 6

4.1.2. SQLAlchemy .. 6

4.2. JAVA for Android ... 7

4.3. C Access Point ... 7

5. Code explanation .. 8

5.1.1. Access Point ... 8

5.1.2. Server ... 9

5.1.3. Mobile application .. 10

6. Conclusion .. 12

1. Introduction

 This project aims to resume the knowledge of Wi-Fi indoor positioning System learnt

in the LO53. In order for the project to take place we need:

 - Access Points

 - Android device

 - A server

 - A Wi-Fi connection

 The project begins first with collecting all the information needed in order to have a

RSSI map and a valid finger print. Afterwards the devices can be located easily.

 To achieve this project, we use wireless access points with theRSSI, a positioning

server running on Python, and an Android device.

 For this project we chose to use Python 3 in order to discover a language that was new

to some of us. Python was only used for the server part but we needed to use C for the access

points configuration. And as we were asked to have a running android application Java was

the language used under android studio ide.

 Concerning the hardware requirements, we needed several TP-LINK access points, a

laptop (to run the server) and an Android device.

 Our work was managed with the use of the git tool in order to share the improvement

of each of us on the project.

2. Importance of such project

Wi-Fi positioning system (WPS) is used where GPS is inadequate. The localization

technique used for positioning with wireless access points is based on measuring the intensity

of the received signal (RSS) and the method of "fingerprinting”. Typical parameters useful to

geolocate the WiFi hotspot or wireless access point include the SSID and the MAC address of

the access point. The accuracy depends on the number of positions that have been entered into

the database. The possible signal fluctuations that may occur can increase errors and

inaccuracies in the path of the user. Anyplaceis a free and open-source Wi-Fi positioning

system that allows anybody to rapidly map indoor spaces and that won several awards for its

location accuracy. Like the last indoor positioning project of the MIT that its students were

able to have an indoor positioning system using just one access point.

3. Diagrams

3.1. Global sequence diagram

The image below describes the different communications between the device and the server

and also between the server and the access points.

3.2. Database mode

For our data base we choose to have 5 table were we can store information about Access

Points in order to manage them. Also to store the devices information. And as every

positioning system we have also fingerprint, RSSISample, Location and RSSIElement tables

that will enable us to store information that will help us to locate a device.

4. Technologies used

4.1. Python:

The server was developed in Python 3. It used the web micro framework Flask to

handle the HTTP communication, and the ORM provided by SQLAlchemy, using SQLite,

to manage the database. The server is mainly divided in two parts: the setup server, and the

localization server. Some part, like the models, and utility functions are shared by both

parts. Each server provides a REST API to communicate with using HTTP.

4.1.1. Flask

Flask is a micro web framework written in Python and based on the Werkzeug toolkit

and Jinja2 template engine. It is BSD licensed.

Flask is called a micro framework because it does not presume or force a developer to

use a particular tool or library. It has no database abstraction layer, form validation, or any

other components where pre-existing third-party libraries provide common functions.

However, Flask supports extensions that can add application features as if they were

implemented in Flask itself. Extensions exist for object-relational mappers, form validation,

upload handling, various open authentication technologies and several common frameworks

related tools. Extensions are updated far more regularly than the core Flask program.

We choose Flask because it’s easy to get started with as a beginner because there is

little boilerplate code for getting a simple app up and running.

4.1.2. SQLAlchemy

SQLAlchemy is an open source SQL toolkit and object-relational mapper (ORM) for

the Python programming language released under the MIT License.

SQLAlchemy provides "a full suite of well-known enterprise-level persistence

patterns, designed for efficient and high-performing database access, adapted into a simple

and Pythonic domain language". SQLAlchemy's philosophy is that SQL databases behave

less and less like object collections the more size and performance start to matter, while object

collections behave less and less like tables and rows the more abstraction starts to matter. For

this reason, it has adopted the data mapper pattern (like Hibernate for Java) rather than the

active record pattern used by a number of other object-relational mappers. However, optional

plugins allow users to develop using declarative syntax.

 We choose SQLAlchemy because it enables us to easily manage the data base.

4.2. JAVA for Android

Android applications are developed using the Java language. As of now, that’s really

the only option for native applications. Java is a very popular programming language

developed by Sun Microsystems (now owned by Oracle). Developed long after C and C++,

Java incorporates many of the powerful features of those powerful languages while

addressing some of their drawbacks. Still, programming languages are only as powerful as

their libraries. These libraries exist to help developers build applications.

Some of the Java’s important core features are:

• It’s easy to learn and understand

• It’s designed to be platform-independent and secure, using virtual machines

• It’s object-oriented

Android relies heavily on these Java fundamentals. The Android SDK includes many standard

Java libraries (data structure libraries, math libraries, graphics libraries, networking libraries

and everything else you could want) as well as special Android libraries that will help you

develop awesome Android applications.

Java was only used for the device application part using Android studio.

4.3. C Access Point

C is a general-purpose, imperative computer programming language, supporting

structured programming, lexical variable scope and recursion, while a static type system

prevents many unintended operations. By design, C provides constructs that map efficiently to

typical machine instructions, and therefore it has found lasting use in applications that had

formerly been coded in assembly language, including operating systems, as well as various

application software for computers ranging from supercomputers to embedded systems.

That’s why it was the perfect language to configure the access points.

5. Code explanation

5.1.1. Access Point

The access points need to be turn into the monitor mode in order to sniff every packet

available around it. We can do it using the web interface of the access point or writing a script

shell (mon.sh) to do it in a terminal through ssh.The access point application was programmed

in C. The project imposes this language but anyway, the AP system is so minimalist the C is

the best choice.

We used the base code given on Moodle. This code already getsWi-Fi packets and

analyses them in order to get the MAC address and the RSSI. We used also the given

rssi_list.h file and we wrote the corresponding rssi_list.c. Several modifications were done, in

fact, we don’t store the rssi in mWatt but in db, the conversion is done by the server. We

assume that the server is here to do the most bigger part of the computation, and the AP and

mobile just send minimal information.

To communicate with the server, we just use TCP socket and not HTTP (wich requires

the additional libcurl, and doesn’t provide anything essential for our program), so the use of

TCP protocol was minimalist but fits perfectly to our goals. But we needed to define a little bit

more than just the use of TCP.

How they communicate?

 AP is launched and wait for TCP connection from the server — Server opens a

connection and send a MAC address to the AP.

 AP gets the MAC, looking for the MAC in the linked list and return the

corresponding RSSI.

 The server gets the RSSI and close the connection.

 AP waits for the next TCP connection.

We just have 2 threads running, one for the pcap function analyzing every packet in

the air, and the second (the main thread) which is handling the TCP connection to

communicate with the server. The second thread is also the main thread which is comparing

the asking MAC address with all the addresses stored in the linked list. If the asking MAC

address is not found, the AP will return 4000 to the server, because 4000 dBm is an

impossible value to get with this APs.

The AP has a MIPS processor, which is different than our laptop processor we need to

cross compile with the given toolchain. The main problem while debugging was that we

didn’t have GDB, the only solution was to print some traces.

5.1.2. Server

a- The shared part

The models:

The SQLAlchemy was chosen because it is easy to buildan ORM mapping some

Python classes to tables in a database.

The following models were done:

 AP: storing the access points, with their IP and a name

 Location: storing x and y, plus a one-to-one link to the associated fingerprint

 Fingerprint: storing the link to its location, and a link to its RSSI sample

 RSSISample: storing its RSSI elements

 RSSIElement: storing the access point IP where it came from, and the

associated RSSIvalue

The utility functions:

Again, there was two parts:

• the functions handling the computing of the location,

• and the ones taking care of the communication with the access points.

Computing locations: rssi_distance is the most important. It is the one that compute

the distance between two RSSI sample, given a threshold. With some pythonic magic, it could

handle RSSI either as dictionnaries, or as stored RSSISample classes. It returns the distance as

a float. This value is given to the compute_location function, that just it erate though the

stored finger prints, and find the one with the closest distance. Then it returns its location.

Communicating with the access points: The communication was made using TCP

sockets, soit went easily with the socket package provided by Python. The first function is

theget_rssi_element, that takes the access point IP, the device MAC, and an element

dictionary to be filled. It opens the connection, sends the MAC, and wait for a 4 bytes value

containing the RSSI value. Then it puts it into the dictionary at the key “IP”. The second

function, get_rssi_sample, takes only the device mac, and iterates though the access points to

create a thread for each one, and pass it the right values.Then, all the threads are launched

almost at the same time, to ensure the device to be at the same location for each value

received. The element dictionary filled is now returned, and it is our RSSI sample.

b- The setup server

The setup server is made to fill the database with every data needed to make the geo-

positioning to work. It allows to initialize the database, add access points, and finally add

localization, computing the corresponding fingerprint using the utility functions. The device’s

MAC address is stored in a web session, allowing to have many devices setting up the

database at the same time.

c- The localization server:

It is almost the same as the setup server, but provide less function: it never writes the

database, but uses it only in read mode. The only difference is that it performs the inversed

operation concerning the localization: it gets the RSSI, then find a location given the

fingerprint, rather than store a fingerprint corresponding to the given location.

5.1.3. Mobile application

In both applications we took in consideration that the server IP is fixed, because we

thought that an external user won’t be able to now the server IP and it would be unsecure if

that person did. So rather than asking the user the IP server address and its port we fixed

them.

a- The initialization app:

The main aim of the initialization up is to initialize the data base.

The app has two main activities:

 -The location view asks for the coordination of the place where the user is in,

in order to relate an rssi to that coordination

 -The Access Point view that helps us to store information about the access

points

b- The location app:

For the location app which is the main application of the project it has the activity

where the building plan is shown with the marker put on the coordination of the location of

the device.

The device has a direct connection to the server by an HTTP protocol. At first it sends

an initialization request to check that the data base is ready then sends the mac address in

order to be located. Afterwards, it sends a get location request to get the coordination and put

the marker on the plan image checking the scale.

6. Conclusion

In this project, we successfully built an indoor-positioning system by several Access

Points. We had several steps to achieve our project.

This project was an interesting subject to work on. It enabled us to learn some new

technologies such as python 3 (with flask and SQLAlchemy). This indoor positioning project

helped us also to accentuate what we learnt during this semester. We were allowed to see each

part of a basic Wi-Fi positioning system and know the concept to monitor the

communications and to connect the device, the APs and the server altogether.

